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Introduction

En français

Les vagues extrêmes (tsunamis, vagues scélérates, etc) jouent un rôle im-
portant dans l’environnement et les risques naturels. La compréhension de
ces phénomènes passe, entre autres, par la simulation numérique. Les tsu-
namis se caractérisent généralement par des vagues ayant des longueurs
d’onde entre 10 et 500 km et des périodes de plus d’une heure. La pro-
fondeur des océans étant typiquement de 3 000 à 4 000 mètres, ces vagues
extrêmes peuvent être décrites par la théorie dite des vagues en eaux peu-
profondes, comme nous le verrons dans ce rapport.

Au lieu de génération du tsunami, en océan profond, le niveau de
l’eau s’élève de quelques mètres à peine ce qui explique que la perturba-
tion n’est généralement pas ressentie par les navires à ce niveau là, étant
donné la longueur d’onde du phénomène. Au fur et à mesure que l’onde
se déplace − à une vitesse très élévée1 − vers les côtes, la profondeur
diminue ce qui augmente la hauteur des vagues.

La propagation de ces ondes se fait sur des centaines voire des mil-
liers de kilomètres avec une perte d’énergie infime. Afin de capturer au
mieux cette physique nous devons utiliser des méthodes très précises qui
permettent de conserver cette énergie tout au long de la simulation. Nous
devons ainsi avoir des erreurs numériques aussi faibles que possibles et
une dissipation numérique quasiment nulle. Pour ces raisons, nous fai-
sons appel aux méthodes spectrales qui vont nous permettre de réaliser
des simulations tout en tenant compte de ces contraintes fortes.

Ce rapport expose une partie des travaux que j’ai été ammenés à faire
lors de mon stage au laboratoire de mathématiques Jean Alexandre Dieu-
donné de l’université de Nice. Il est divisé en trois parties. La première vise
à présenter différentes équations classiques décrivant le mouvement des
vagues. Ces équations seront présentées sous leur forme la plus simple,
c’est à dire avec l’hypothèse d’un fond horizontal. Dans la seconde partie,
nous nous intéresserons aux méthodes numériques permettant les simu-
lations précises dont nous avons besoin. Nous exposerons notamment le
principe des méthodes spectrales et les travaux de Brice Eichwald sur le
Facteur Intégrant Modifié. Enfin la troisième partie sera consacrée à la dé-
rivation des équations des vagues avec un fond variable en temps et en
espace. Les équations de Serre − Green-Nagdhi seront ainsi généralisées.

1c ≈
√

g× d ≈
√

9.81× 3000 ≈ 617 km/h en plein océan.
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2 Introduction

In English

Extreme waves (tsunamis, rogue waves, etc) play an important role in the
environement and natural hazards. Their understanding requires, inter
alia, numerical simulation. Tsunamis are usually characterized by waves
having a wavelength between 10 and 500 km and a period over an hour.
The ocean’s depth is about 3 000 to 4 000 meters, therefore those extreme
waves can be described by the so-called shallow-water theory, as we will see
in this report.

At the place where the tsunami occurs, in the deep ocean, the water
level increases of a few meters only, explaining why ships, at this same
place, usually do not feel the perturbation, given the wavelength of the
phenomena. As the wave goes − at a very high speed2 − towards the
costs, the ocean’s depth decreases and the wave-height increases.

The wave propagates over hundreds even thousands kilometers with
a very tiny energy loss. To capture this physic as best as possible, very
precise methods have to be used so that this energy is conserved all over
the simulation. Numerical error must be as small as possible and numeri-
cal dissipation nearly zero. For those reasons, spectral methods are used,
enabling us to perform simulations under those strong constraints.

This report relates a part of the work I have conducted during my in-
ternship at the laboratory of mathematics Jean Alexandre Dieudonné of
the university of Nice. It is divided into three parts. The first one intro-
duces some classical equations describing extreme waves. The equations
are given in their simplest form, that is to say a flat bottom is assumed.
The second part shows the numerical methods we use for the simulations.
The spectral methods and the work of Brice Eichwald on the Modified
Integrating Factor are explained in particular. Finally, the last part is ded-
icated to the derivation of the wave equations with a variable bottom in
space and time. Serre − Green-Nagdhi equations are thus generalized.

2c ≈
√

g× d ≈
√

9.81× 3000 ≈ 617 km/h in deep ocean.



1Nonlinear water-waves

equations

This short chapter aims to introduce different classical nonlinear water-
waves equations which are manipulated in the report. But first, we explain
the mathematical model of the water-wave and the notations we use in the
whole report.

1.1 Mathematical model

We consider an ideal incompressible fluid of constant density ρ. The fluid
is bounded by a free surface and the bottom of the sea. We use a Cartesian
coordinate system, such that the free surface y = 0 corresponds to the
still water level. The horizontal independent variables are denoted by
x = (x1, x2) and the upward vertical one by y. The free surface is given by
y = η(x, t), and the bottom is defined by y = −d(x, t). Finally, we denote
by u the horizontal component of the fluid’s velocity and by v the vertical
one.

Figure 1.1 – domain definition

As illustrated on the sketch 1.1, we call :

• λ the wavelength of the wave ;

• a the amplitude from the wave crest to the still level ;

• b the amplitude from the still level to the troughs of the wave ;

3



4 Chapter 1. Nonlinear water-waves equations

• H = a + b the amplitude from the wave crest to the troughs ;

• h = d + η the height of the fluid. It is assumed to be positive for all
times, h > 0, ∀t.

1.1.1 Notations

In all the present document, we will use the following notations :

• f is the function f depth-averaged. The definition used is :

f (x, t) =
1

h(x, t)

∫ η(x,t)

−d(x,t)
f (x, y, t)dy (1.1)

• φs and φb are the physical quantity φ at the free surface (y = η) and
at the bottom (y = −d) respectively.

• ∇ is the following derivative operator ∇ = (∂x1 , ∂x2)

1.2 Some classical nonlinear equations

In this section, we introduce three classical nonlinear water-waves equa-
tions :

• the Korteweg-de Vrie (KdV) equation ;

• the Shallow-Water (SW) equations ;

• the Serre Green-Nagdhi (SGN) equations.

For simplification purpose, the equations are given in two dimen-
sions (i.e. one horizontal) and the bottom is assumed to be horizontal (i.e.
d(x, t) = const).

1.2.1 Korteweg-de Vries equation

The KdV equation is a mathematical model of shallow water-waves
which is exactly solvable (which is interesting for testing purpose, for
instance). It has been discovered by Boussinesq in 1877, and rediscovered
by Diederik Korteweg and Gustav de Vries in 1895. It may be written as
follow (Eichwald 2013) :

∂tη + c0∂xη + αη∂xη + β∂3
xη = 0 (1.2)

where α = 3
2
√

gd, β = d2c0
6 and c0 =

√
gd.

This equation admits, among others, two types of solutions : a cnoidal
wave solution and a solitary wave solution.



1.2. Some classical nonlinear equations 5

The cnoidal wave solution

The periodic-cnoidal wave solution can be written as follow :

η =
H
m

(
1−m− E(m)

K(m)

)
+ H cn2

(
2 K(m)

x− ct
λ
|m
)

(1.3)

where cn is the Jacobian elliptic function with parameter m (0 ≤ m ≤ 1),
and K(m) and E(m) are the complete elliptic integrals of the first and
second kind respectively.

The speed c, the wavelength λ and the period τ are linked by the
following relations :

c =
√

gh
[

1 +
H

md

(
1− 1

2
m− 3

2
E(m)

K(m)

)]
λ = d

√
16
3

md
H

K(m)

τ =
λ

c

The figure 1.2 show the profile of the wave for different values of m.

Figure 1.2 – Cnoidal wave profiles for different values of the parameter m (m = 0 (cyan),
m = 0.9 (red), m = 0.99999 (black)). The grey curve represents the still water level.
(Author Kraaiennest, CC-BY-SA)

The solitary wave solution

When the m parameter of the cnoidal wave solution tends to 1, the wave-
length tends to infinity. That is to say, a solitary wave is found. A solitary
wave is a wave propagating on a long distance, without any deformation.

The solitary wave solution of the equation 1.2 is given by :

η =
H

cosh2 ( κ
2d (x− ct)

) (1.4)

where H is the amplitude of the wave, κ =
√

3H
d , the speed is c =

c0
(
1 + H

2d

)
.

https://en.wikipedia.org/wiki/File:Cnoidal_wave_profiles.svg


6 Chapter 1. Nonlinear water-waves equations

1.2.2 Saint-Venant equations (or Shallow-Waters equations)

The SW equations are a set of hyperbolic partial differential equations de-
scribing the motion of water waves when the wavelength is much higher
than the depth d(x, t). That is to say, when the velocity is mainly horizon-
tal and the vertical component of the velocity can be neglected. The SW
equations, for a horizontal bottom are :{

∂th + ∂x (hu) = 0
∂t (hu) + ∂x

(
hu2 + 1

2 gh2) = 0
(1.5)

In 3.3.1, we show how to obtain this set of equations, in three dimensions,
for any given bottom.

1.2.3 The Serre Green Naghdi equations

Serre (1953) has developed a wider theory than Saint-Venant. Instead of
neglecting the vertical component, he assumed that the vertical velocity
was linear from the seabed to the free surface1. This ansazt permits the
vertical acceleration of the fluid to be taken into account. Those equations
have been rediscovered by Green, Laws and Naghdi. Finally, Fernando J.
Seabra-Santos et al. (1987) generalized those equations to any given bot-
tom (variable in space only, not in time). In 3.3.2 we show how to obtain
the SGN equations, in three dimensions, for any given bottom.

The SGN equations, for a horizontal bottom, in two dimensions, are :{
∂th + ∂x (hu) = 0

∂t (hu) + ∂x

(
hu2 + gh2

2 + Γsh2

3

)
= 0

(1.6)

where Γs represents the acceleration of the fluid at the free surface. We
have Γs = h

(
(∂xu)2 − ∂xtu− u∂xxu

)
.

As for the KdV equations, this set of equations admits a solitary wave
and a cnoidal wave as solutions when the bottom is horizontal.

The cnoidal wave solution

There exists a (2π/k)-periodic cnoidal wave solution :

η = a
dn2 (0.5χ(x− ct)|m)− E(m)

K(m)

1− E(m)
K(m)

= a− H sn2 (0.5χ(x− ct)|m)

u =
cη

d + η

where dn and sn are the Jacobian elliptic functions with parameter m
(0 ≤ m ≤ 1), and K(m) and E(m) are the complete elliptic integrals of the
first and second kind respectively.

The parameters are linked by those relations :

1i.e., the incompressibility is imposed.



1.3. Sum up 7

k =
πχ

2 K(m)
H =

ma K(m)

K(m)− E(m)

(χd)2 =
3gH
mc2 m =

gH(d + a)(d + a− H)

g(d + a)2(d + a− H)− d2c2

The solitary wave solution

As m → 1, λ → ∞ and therefore a solitary wave solution exists, and is
given by this set of relations :

η =
a

cosh2 (0.5χ(x− ct))
u =

cη

d + η

c =
√

g(d + a) (χd)2 =
3a

d + a

1.3 Sum up

Different equations have been introduced. In this report, the KdV equation
will be used as our toy-model, while the SW and the SGN equations will
be generalized to a variable bottom in space and time. (Of course, the
particular solutions (solitary and cnoidal) do not hold when the bottom is
not horizontal.)





2Numerical resolution of the

water-waves equations

This chapter is dedicated to the numerical resolution of the water-
waves equations. We illustrate the procedure with the resolution of the
KdV equation, which is the simpler mathematical model of non-linear
water-waves.

The first part of this chapter briefly explains the principle of pseudo-
spectral methods. In the second part, we talk about the Runge-Kutta (RK)
method, used to approximate the solution. We emphasize the need of
an adaptive time-step and explain the use of the dense-output. The third
part deals with the Integrating Factor (IF). The IF uses a clever variable
substitution to improve the time-step integration of the RK algorithm. We
finish this chapter with the Modified Integrating Factor (MIF), introduced
by Eichwald (2013), which is an improvement of the IF for strongly non-
linear water-waves equations.

Because the equations are strongly non-linear and solved with a non-
local method, we need to compute the solution over the whole domain.
Because the waves we are studying can spread over huge distance, we
need fast solving-methods. Moreover, because the simulation runs over
numerous wave periods, we need an accurate1 method to capture all the
physic of the equation and to loose as least as possible in numerical errors.
The methods we introduce, IF and MIF, are ad-hoc methods developed for
that purpose.

2.1 Pseudo-spectral methods

2.1.1 Motivation

Our purpose is to solve, numerically, non-linear equations. There exists
different methods and they can be classified into two main categories : the
local ones and the non-local ones. In the first category, there are for instance
the finite differences or the finite elements. In the second one, there are
the pseudo-spectral methods. The finite differences are said to be local
because to estimate the derivative in one given point, the values of the
function around this point have to be used. Pseudo-spectral methods are
said to be non-local, because one has to use all the points of the function
to estimate a derivative in one given point.

1and by accurate we mean that the order of the error between the computed solution
and the analytical one has to be the same as the machine error ε (≈ 10−16 or ≈ 10−32

depending if the computation is done in double or quadruple precision).

9



10 Chapter 2. Numerical resolution of the water-waves equations

Spectral methods involve the decomposition of a given discrete func-
tion f onto an orthogonal basis of functions φn as follow :

f (n) =
N−1

∑
i=0

Aiφi(n) (2.1)

The derivative of f , d f (x)
dx can be obtained computing the derivatives of

φi, and we have :

d f (n)
dn

=
N−1

∑
i=0

Ai
dφi(n)

dn
(2.2)

This show how simple it is to compute the derivative of a given sig-
nal when its decomposition is known (because the derivatives of φi are
known !).

In our case, the f function is discrete, and we use the discrete Fourier
transform to achieve this decomposition. That is to say, for N discrete
points, we have :

f (n) =
N−1

∑
k=0

f̂ (k)e2iπkn/N (2.3)

where the f̂ (k) are defined as follow:

f̂ (k) =
N−1

∑
n=0

f (n)e−2iπkn/N (2.4)

The straight forward decomposition of f (n) is really expensive (about
N2 operations). Fortunately, in 1965, J.W. Cooley and J. Tukey suggested
a Fast Fourier Transform (FFT) algorithm that runs in about N log N ope-
rations. This algorithm was the key for real applications using spectral
methods.

2.1.2 Why “pseudo” ?

One can notice that in the Fourier space, we have :

dn f̂ (k)
dxn = (ik)n f̂ (k) (2.5)

that is to say, calculating derivatives in the Fourier space is no more than
calculating a product of two functions. On the other hand, calculating the
product of two functions in the physical space is calculating a convolution
in Fourier space ; and that is a really expensive operation. The idea is
to make the calculations in the Fourier space when only derivatives are
involved and to make calculations in the physical space when product
of functions are involved. One can quickly switch from one space to the
other with the FFT algorithm. That is where the pseudo come from ; we
take the best from each space.

Remark 2.1 In this report, when a physical variable is denoted by φ, we denote by φ̂ this variable
in the Fourier space. The non-linear terms, in the Fourier space, are denoted by



2.2. Runge-Kutta methods 11

F
{

φ2}, and not by φ̂2. For instance, knowing φ̂, F
{

φ2} is computed as follow :

F
{

φ2} = F
{
F−1 {φ̂

}2
}

where F−1 {} denote the inverse of the FFT.

2.1.3 The Korteweg-de Vries equation in the Fourier space

In the Fourier space, the KdV equation may be written as follow :

∂tη̂ + ic0k
(

1− k2 d2

6

)
η̂ + ik

3
4

√
g
d
F
{

η2} = 0 (2.6)

where η̂ is the variable η in the Fourier space.
Given this equation, we now introduce different procedures to numer-

ically solve it. Those methods are, of course, usable for other equations.

2.2 Runge-Kutta methods

The RK methods are numerical iterative methods used to approximate the
solution of Ordinary Differential Equations (ODE). Basically, if the deriva-
tive of a physical quantity can be written as a function of this physical
quantity, then one can use a RK method to approximate the solution. That
is to say, if we have : {

y′ = f (y, t)
y(t0) = y0

(2.7)

then the approximated solution is given by (Hairer et al. 2004) :

yn+1 = yn + ∆t
s

∑
i=1

biki (2.8)

where the ki are defined by :

k1 = f (yn, tn)

k2 = f (yn + a21k1∆t, tn + c2∆t)
...

ks = f (yn + ∆t
s−1

∑
i=1

asiki, tn + cs∆t)

The value for s, ci, aij and bi are given in the literature (Hairer et al.
2004, for instance) and depend on the method’s order2. Usually, these data
are arranged in a mnemonic device, known as a Butcher tableau (after John
C. Butcher) :

2a method is said to be « of order n » when it is exact for a polynomial of order n.



12 Chapter 2. Numerical resolution of the water-waves equations

0
c2 a21
c3 a31 a32
...

...
. . .

cs as1 as2 · · · as,s−1
b1 b2 · · · bs−1 bs

The most classical example is maybe the RK of order 4 − usually re-
ferred as RK4 − and is given by the following Butcher tableau :

0
1/2 1/2
1/2 0 1/2

1 0 0 1
1/6 1/3 1/3 1/6

2.2.1 The adaptive time-step

Constant time-step procedures are shown to be inefficient for nonlinear
simulation of surface gravity waves (Clamond 2006). One needs adaptive
time-step procedures to capture all the physic of the waves, it enables the
procedure to run with the maximal time step while the local relative error
is controlled.

The idea is to perform two RK procedures with different orders, p for
the first one and p− 1 for the second one, and to adapt the time step ∆t
so that the local relative error between both results is inferior to a given
constant. If the error is higher than the given constant, then the same step
is redone but with a lower ∆t, until the error fits the given criteria. The
Butcher tableau is now represented as follow :

0
c2 a21
c3 a31 a32
...

...
. . .

cs as1 as2 · · · as,s−1
yn+1 b1 b2 · · · bs−1 bs
ỹn+1 b̃1 b̃2 · · · b̃s−1 b̃s

where the p− 1 order solution is given by :

ỹn+1 = yn + ∆t
s

∑
i=1

b̃iki (2.9)
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The Proportional Integral (PI)-step control

Once the local relative error is computed, one has to adapt the time-step
∆t. We use the PI-step control (Hairer et al. 2004, p. 164) to achieve this
purpose. The corresponding algorithm is given below (Algorithm 1) :

Algorithm 1: PI-step control
Data: ∆tn, tol, α, β, yn and errn−1
Result: yn+1, errn and ∆tn+1
errn ← ∞;
∆topt ← ∆tn;
while errn ≥ 1 do

compute yn+1;
compute ỹn+1;
compute errn = ‖ỹn+1 − yn+1‖/tol;
∆topt ← ∆tn × err−α

n−1 × errβ
n

end
∆tn+1 ← ∆topt

In the algorithm 1, the quantities α and β are constants defined accord-
ing to the order of the method. It has been shown (Gustafsson et al. 1988)
that the best results are obtained with :

α =
0.7
p

β =
0.4
p

where p is the order of the method.
One can find a very detailed implementation of this algorithm

in Hairer et al. (2004) or in Eichwald (2013).

Bogacki and Shampine

The Bogacki and Shampine method (named after B. Bogacki and L. F.
Shampine, the authors) is one of the RK schemes we use for the adap-
tive time-step procedure. The solution y is estimated to the order 3, and
the approximated solution ỹ to the order 2. The Butcher tableau of this
method is the following one :

0
1/2 1/2
3/4 0 3/4

1 2/9 1/3 4/9
yn+1 2/9 1/3 4/9 0
ỹn+1 7/24 1/4 1/3 1/8

One can notice that we have kn
4 = kn+1

1 , that is to say the first stage at
the n + 1 iteration is the same as the last stage at the previous iteration. In
other words, for each time step, only two stages are computed3. So, the
adaptive time-step procedure comes without extra computational cost !
This property is known as First Same As Last (FSAL).

Other methods of higher order with the FSAL property exist, but our
goal is to simulate nonlinear water waves, and it has been shown that

3except for the first time, of course.
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when using the MIF, the Bogacki and Shampine method is the one giving
the best results (Eichwald 2013). Nonetheless, we can name the Dormand
and Prince method (order 5/4) and the Verner one (order 9/8).

2.2.2 Dense Output

As explained in the previous section, constant time-step procedures are in-
efficient for our purpose. But, using constant time-step procedures enables
the user to predict the output times and export the data each x seconds
for instance, in order to analyse it or to make an animation or whatever
she needs.

Using adaptive time-step procedure makes the user unable to predict
the output times. The goal of the dense output is to provide a way to
know the result at a given time t between [tn; tn+1]. The idea is to the
make a Hermit interpolation, using the computed derivatives ki, to get
the expected result. Because only already computed data − the ki − is
involved, the interpolation comes without extra computational cost !

Let’s consider we start from tn and we compute the ki to obtain yn+1,
the value at tn+1. Now, we want the value of y(tθ), where tθ = tn + θ∆t,
for θ ∈ [0; 1]. This value is obtained using the following formula (Hairer
et al. 2004) :

y(tθ) = yn + ∆t
s

∑
i=1

bi(θ)ki (2.10)

where the bi(θ) functions depend on the RK method used and are given
in the literature. For instance, with the Bogacki and Shampine scheme, the
bi(θ) functions are :

b1(θ) = θ − 3θ2

2
+

2θ3

3

b2(θ) = b3(θ) = θ2 − 2θ3

3

b4(θ) = −
θ2

2
+

2θ3

3

As explained later, the dense output will also be used to estimate the
derivatives of y.

2.2.3 An example with the Korteweg-de Vries equation

As seen before, the KdV equation, in the Fourier space, may be written
as (2.6). One can easily see that the time derivative of η̂ can be written as
a function of η, and therefore numerically solved by an adaptive time-step
RK procedure as explained hereinbefore :

∂tη̂ = −ic0k
(

1− k2 d2

6

)
η̂ − ik

3
4

√
g
d
F
{

η2} (2.11)
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2.3 The Integrating Factor

The IF method consists in a simple − but clever − variable substitution
that enables the linear part of the equation to be exactly integrated, while
the nonlinear one is approximated by a RK method.

Let’s take a generic relation :

dty + Ay = N (y, t) (2.12)

where y is a vector, A is the matrix representing the linear part of the
equation and N (y, t) a function describing the nonlinear part. One can
make the following substitution :

y = e−A(t−tn)z (2.13)

calculating the derivative of this relation with respect to t, it comes :

dty = −Ae−A(t−tn)z + e−A(t−tn)dtz (2.14)

substituting y back gives :

dty + Ay = e−A(t−tn)dtz (2.15)

leading to :

dtz = eA(t−tn)N (y, t)

= eA(t−tn)N
(

e−A(t−tn)z, t
)

(2.16)

In (2.16) the time derivative of z is written as a function of z and there-
fore can be solved using a RK method. The value of y can be found back
using the initial substitution.

Remark 2.2 One can notice that if we had chosen the following substitution y = e−Atz, the
results would have been exactly the same, algebraically. But not numerically at
all ! Numerically, the closest from zero the value is, the better the result is. For
instance, one can launch a Python shell and compute different values of sin 2kπ
for k ∈ J1; ∞J. When k is small, the given value is correct4, but the result is far
from being correct when k → ∞ (for k = 1050, the given result is −0.1586, that
is to say. . . )

For that reason, the computations must be done close to zero, hence the tn
term.

2.3.1 with the Korteweg-de Vries equation

The KdV equation is directly adaptable to the IF method and we have :

A = ic0k
(

1− k2 d2

6

)
N (η̂, t) = −ik

3
4

√
g
d
F
{

η2}
4sin(2*pi)= -2.4492935982947064e-16, which is the machine zero.
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2.4 The Modified Integrating Factor

In the last part of this chapter, we talk about the MIF. The MIF is the
core of the PhD of Eichwald (2013). As its name suggests, this method
is based on the IF we have just talked about earlier. This method aims
to reduce the numerical stiffness of the resolution of the equation. It is
based on a simple observation : adding zero never changes, algebraically, the
result. But, as we briefly explained in the remark 2.2, numerically, it can
yield to a really different result. The results shown by Eichwald (2013) are
really impressive. With this method, the time-step is bigger, and thus, the
simulation runs faster, for the same error.

As we said, we subtract a given quantity P(t) on both sides of the
equation, which returns to add zero :

dty + Ay− P(t) = N (y, t)− P(t) (2.17)

We make a substitution, as for the IF but slightly different :

y(t) = e−A(t−tn)z(t) +
∫ t

tn

e−A(t−τ)P(τ)dτ (2.18)

calculating the derivative of this relation with respect to t leads to :

dty(t) = −Ae−A(t−tn)z(t) + e−A(t−tn)dtz(t)−
∫ t

tn

Ae−A(t−τ)P(τ)dτ + P(t)

(2.19)
which is equivalent to :

dtz(t) = eA(t−tn) (N (y, t)− P(t)) (2.20)

One can see that the difference between (2.16) and (2.20) is the presence
of the function P(t) in the exponential multiplied term. It is with this key
difference that Eichwald (2013) improved the IF.

Now, it is time to choose a convenient function P(t), so that the expo-
nential multiplied term is as closed from zero as possible.

2.4.1 Choosing the best P(t) function

The goal is to choose P(t) such that N (y, t)− P(t) is as small as possible.
The first idea Eichwald (2013) suggested was choosing P(t) such that at
the start of the loop [tn; tn+1], the difference between P(tn) and N (y, tn)
was zero. Thus we have5 :

P(t) = dty(tn) + Ay(tn), for t ∈ [tn; tn+1] (2.21)

As one can see, using this definition for P(t) cancels out the right hand
side of the equation (2.20) at t = tn, i.e. at the beginning of the loop and
therefore decrease the numerical stiffness. But, using a Taylor series of
P(t) around t = tn can perhaps be slightly better :

5Here, all the values are known from the previous step. The derivative dty(tn) is known
as ks, the last stage of the RK step and y(tn) as the output value.
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Pq(t) = [dty(tn) + Ay(tn)] + (t− tn)
[
d2

t y(tn) + Adty(tn)
]

+
(t− tn)2

2!
[
d3

t y(tn) + Ad2
t y(tn)

]
+ · · ·+ (t− tn)q

q!

[
dq+1

t y(tn) + Adq
t y(tn)

]
= p0 + (t− tn)p1 +

(t− tn)2

2!
p2 + · · ·+

(t− tn)q

q!
pq (2.22)

where Pq(t) is the truncated Taylor series of P(t) around t = tn at the
order q.

Remark 2.3 MIF0, MIF1 and MIF2 denote the MIF method using the polynomial P(t) truncated
at the order 0, 1 or 2. In practice, they are the only ones giving interesting results
(Eichwald 2013).

He explained also that a better approximation could have been chosen calcu-
lating the Taylor series around t = tn +

∆t
2 instead of t = tn, but it would have

implied extra computational cost that we prefer to avoid.

2.4.2 Calculating the time derivatives

One can notice that to compute the pi terms, the time derivatives of y(tn)
are needed. The RK method directly gives y(tn) and dty(tn). Others are
obtained using the dense output (see 2.2.2 p. 14). Indeed, the derivation
of (2.10) leads to :

dny(t)
dtn =

(
1

∆t

)n−1 s

∑
i=1

dnbi(θ)

dθn ki for n ≥ 1 (2.23)

the evaluation in t = tn gives the expected value.

2.4.3 Substituting y back

The last needed thing to do is to calculate the integral at the right hand
side of the equation (2.18). Because P(t) is a polynomial, the integral can
be analytically computed :

∫ t

tn

e−A(t−τ)P(τ)dτ =
(

1− e−A(t−tn)
)

p0A−1

+
(

e−A(t−tn) − 1 + A(t− tn)
)

p1A−2

· · ·

therefore, y is equal to :

y(t) = e−A(t−tn)z(t)+
q

∑
n=0

(
−e−A(t−tn) +

n

∑
k=0

Ak(tn − t)k

k!

)
(−1)nA−(n+1)pn

(2.24)
Using this relation, one can easily switch from y to z and thus one can

use the MIF proposed by Eichwald (2013).
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2.5 Some results

This section shows some results of the improvements brought by the MIF
and IF methods. As in this whole chapter, the KdV equation is used as
example. The periodic-cnoidal solution is chosen as initial condition.

With a wave height H = 1 and a cnoidal wave parameter m = 0.9999
and a tolerance of 10−12 and 256 points, we obtain the following averaged
time-steps6 :

classic IF MIF
dt 1.5e−5 2.08e−5 2.21e−5

improvement +38.25% +6.34%

Table 2.1 – Averaged time-steps and percentage improvements for KdV equation with the
following parameters : N = 256, H = 1, m = 0.9999, tol = 10−12

In the case of horizontal bottom, studying the averaged time-step make
sense, because after a short time the adaptive time-step procedure is auto-
calibrated on the best value according to the given tolerance7. The fig-
ure 2.1 shows that property.

Figure 2.1 – time-steps for the classic, IF and MIF methods

Different cnoidal-waves simulations have been performed with dif-
ferent parameters H and m. The table 2.2 p. 19 shows the improvement
percentages we obtained.

When the wave height is small, the IF is really efficient while the
MIF is inefficient (a negative percentage is found). As the wave height
H and the cnoidal-wave parameter m get higher the efficiency of the IF
decreases and the MIF gives better results ! From that observation, we can
say the more the non-linear term N (y, t) is important, the more the re-
sults are interesting. In his PhD theses, Brice Eichwald performed the
MIF method over different equations, such as the KdV equation, the
Non-linear Schrödinger (NLS) equation or the High-Order Spectral (HOS)

6Improvement percentages for the IF are computed compared to the classic method,
and the percentages for MIF are computed compared to the IF.

7If the bottom is moving then the time-steps change to assert that the local error is
always lower than the tolerance.
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H = 0.1 H = 0.4 H = 0.7 H = 1.0

m = 0.1
IF 94.83% X X X

MIF -45.15% X X X

m = 0.2
IF 146.26% 36.86% X X

MIF -52.83% -2.80% X X

m = 0.4
IF 233.55% 64.21% 35.42% 23.63%

MIF -65.34% -1.75% 3.26% 1.53%

m = 0.8
IF 321.00% 84.67% 47.51% 32.40%

MIF -73.72% -16.50% 6.44% 4.11%

m = 0.99
IF 365.45% 95.65% 53.64% 36.68%

MIF -76.27% -21.92% 8.41% 5.67%

m = 0.9999
IF 378.80% 99.13% 55.78% 38.25%

MIF -76.88% -23.09% 9.52% 6.34%

m = 0.999999
IF 386.37% 101.75% 57.45% 39.47%

MIF -77.23% -24.41% 9.82% 6.82%

Table 2.2 – Improvement percentages for different cnoidal-waves simulation with differ-
ent parameters H and m.

equation. He shows that the more the equation is non-linear the more the
MIF method is interesting. In particular, for the HOS equation, he gets a
impressive improvement varying from 3 440% to 62 513 369.00%8, while
the improvement of the IF method was only 50%.

Remark 2.4 The percentages that I have found are quite different from the ones found by Eichwald
(2013). I have been unable to understand why. But I think the most important is
that the results’ behavior is the same.

8The percentage changes when the equation parameters change.





3Derivation of nonlinear

water-wave equations with a

variable bottom

In the chapter 1, classical nonlinear water-wave equations have been
given. Now, we suggest to show where do those equations come from.
As our goal is to simulate tsunamis, we will assume that the seabed is not
horizontal but can change in space and in time.

We use exactly the same domain as shown in 1.1 p. 3. We denote by φ̇
or D

Dt (φ), equally, the total derivative of the physical quantity φ. That is
to say, we have :

D
Dt

(φ) = φ̇ = ∂tφ + (u ·∇) φ + v∂yφ (3.1)

We can notice that for φs and φb we have :

φ̇s = ∂tφs + (u ·∇) φs φ̇b = ∂tφb + (u ·∇) φb (3.2)

It has been observed that the horizontal velocity in the fluid is usually
uniform across the fluid depth (Mitsotakis 2013). That why, we vertically
integrate the Euler equations, which describe the flow, to simplify the
problem1. Using the depth-averaging procedure, we obtain a new set of
equations. Making assumptions on the vertical velocity will enable us to
obtain the SW and SGN equations.

3.1 Euler equations

The Euler equations are a set of equations governing inviscid flow. The
equations represent continuity and conservation of momentum and en-
ergy. When assuming the fluid mass density ρ is constant, the continuity
equation is given by (3.3) and the conservation of momentum is given by
(3.4a) and (3.4b). They correspond to the Navier-Stokes equation with zero
viscosity and heat conduction terms.

∇ · u + ∂yv = 0 (3.3)

∂tu + (u ·∇)u + (v∂y)u = −∇P
ρ

(3.4a)

1From 3 parameters (e.g. u(x, y, t)), depth-integrating simplify the problem to 2 param-
eters (u(x, t)).

21
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∂tv + (u ·∇)v + (v∂y)v = −∂y
P
ρ
− g (3.4b)

where P is the pressure, and g the acceleration due to the gravity. This set
of equations is supplemented by two kinematic boundary conditions (at
the free surface and at the seabed) :

vs = ∂tη + us ·∇η at y = η(x, t) (3.5)
vb = −∂td− ub ·∇d at y = −d(x, t) (3.6)

Those conditions mean that the free surface and the seabed are imperme-
able. That is to say that material particles on the surface (or the seabed)
remain on the surface (or the seabed).

3.2 The depth-averaged Euler equations

The idea is to vertically integrate the Euler equations (3.3), (3.4a) and (3.4b)
and to combine the obtained equations to write h, u and P as a function of
v. Then, using different ansazts on v (based on the physic of the waves),
we find the SW and SGN equations.

3.2.1 Integrating the continuity equation

Integrating (3.3) from y = −d to y = η, we have :∫ η

−d
∇ · udy +

∫ η

−d
∂yvdy = 0 (3.7)

Using Leibniz rule2 yields to :

∇ ·
∫ η

−d
udy− us ·∇η − ub ·∇d + vs − vb = 0 (3.8)

Finally, using conditions (3.5) and (3.6), we can simplify the last equation
to :

∂th +∇ · (hu) = 0 (3.9)

This equation relates the fluid height h and the depth-averaged hori-
zontal velocity u. This equation is common to the SW and SGN equations
and one can notice that no approximation has been made, this equation is
exact.

3.2.2 Integrating the horizontal momentum equation

In a similar way, the horizontal momentum equation (3.4a) is depth-
averaged. But, to do so, it is simpler to rewrite the left-hand side, using
the continuity (3.3) and after some algebra3, as follow :

∂tu + (u ·∇)u + v∂yu = ∂tu +∇ · (u⊗ u) + ∂y(vu) (3.10)

2dθ

(∫ b(θ)
a(θ) f (x, θ)dx

)
=
∫ b(θ)

a(θ) fθ(x, θ)dx + f (b(θ), θ)bθ(θ)− f (a(θ), θ)aθ(θ)
3in particular, using the fact that ∇ · (u⊗ v) = u (∇ · v) + (v ·∇) u, for (u, v) ∈ R2 as

shown in A.1 p. 33.
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where “⊗” denotes the tensor product.
Integrating (3.4a), with the left part written as in (3.10), from −d to

η, using the Leibniz rule and the kinematic boundary conditions, after
simplification, leads to :

∂t (hu) +∇ · (hu⊗ u) = −
∫ η

−d
∇P

ρ
dy (3.11)

Now, we extract P
ρ from the right-hand side of this equation using

Leibniz rule. ∫ η

−d
∇P

ρ
dy = ∇

(
h

P
ρ

)
− Ps

ρ
∇η − Pb

ρ
∇d (3.12)

Gathering the two last equations, we find :

∂t (hu) +∇ · (hu⊗ u) = −∇
(

h
P
ρ

)
+

Ps

ρ
∇η +

Pb

ρ
∇d (3.13)

Ps is known a priori, P and Pb are to be defined using the depth-averaged
vertical momentum.

3.2.3 Integrating the vertical momentum equation

The last step in the process of re-writing the Euler equations, is to use the
depth-averaged vertical momentum equation to write P and Pb as a func-
tion of v. For that purpose, we denote by v̇ and ξ the following quantities :

v̇ = ∂tv + (u ·∇) v + (v∂y)v = −∂y
P
ρ
− g

ξ =
∫ η

−d
(y + d)v̇dy

The quantity ξ can be computed quite straight forward and leads to :

ξ = h
P
ρ
− h

Ps

ρ
− g

2
h2 (3.14)

Therefore, the depth-averaged pressure, needed in (3.13), is given by :

h
P
ρ
= ξ + h

Ps

ρ
+

g
2

h2 (3.15)

The last needed quantity is the pressure at the bottom, which can be
obtained by integrating the vertical momentum from y to η, and taking
the value for y = −d. It yields :

Pb = ρh
(
v̇ + g

)
+ Ps (3.16)

One can notice that the pressure at the bottom is the sum of the hydro-
static pressure, Phy = ρhg + Ps, and a hydrodynamic one, Pdy = ρhv̇.
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3.2.4 Final depth-averaged equations

Finally, gathering (3.9), (3.13), (3.15) and (3.16) we obtain the following
system :

{
∂th +∇ · (hu) = 0

∂t (hu) +∇ · (hu⊗ u) = −∇
(

h P
ρ

)
+ Ps

ρ ∇η + Pb
ρ ∇d

(3.17)

with

v̇ = ∂tv + (u ·∇)v + (v∂y)v

ξ =
∫ η

−d
(y + d)v̇dy

h
P
ρ
= ξ + h

Ps

ρ
+

g
2

h2

Pb = ρh
(
v̇ + g

)
+ Ps

3.3 Models

The Euler equations rewritten, we can make different ansazts on the verti-
cal velocity field v. Those different ansazts will lead to the SW or the SGN
equation.

We start with the SW equations, because the calculations are really
straight forward from (3.17). Once we are done with the SW equations,
we will talk about the SGN equations.

3.3.1 Saint Venant equations (or Shallow-Water equations)

One can assume that the wavelength is much higher than the depth, hence
the velocity is mainly horizontal and the vertical component v can be ne-
glected. This yields to u ≈ u ≈ u(x, t) and v ≈ 0. This simplifies radically
our equations, because those assumptions give immediately v̇ ≈ 0 and
ξ ≈ 0. Moreover, because u is assumed to be constant with respect to y,
we have u⊗ u = u⊗ u.

Using those observations we get :

Pb = ρhg + Ps h
P
ρ
= h

Ps

ρ
+ g

h2

2
(3.18)

that is to say, the pressure field is taken as hydrostatic everywhere in the
fluid. Therefore, the system (3.17) becomes, after some simple algebra :{

∂th +∇ · (hu) = 0
∂t (hu) +∇ ·

(
hu⊗ u + 1

2 gh2I
)
= hg∇d− h∇ Ps

ρ

(3.19)

where I is the identity matrix.
Those equations are known as the Saint-Venant equations or the

Shallow-Water (SW) equations. They describe the motion of an ideal in-
compressible fluid of a constant density ρ, with a variable bottom.
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Conservative form

The conservative form of the SW equations is often preferred (for com-
putational reasons) to the non-conservative form. In this case, it is quite
simple to obtain it.

Using ∂th + ∇ · (hu) = 0 and after some algebra, the last equation
of (3.19) can be written as :

∂tu +∇
(

1
2

u2 + gη − Ps

ρ

)
= − (∇∧ u) ∧ u (3.20)

One can assume the flow to be irrotational, and it leads to the following
system, which is conservative :{

∂th +∇ · (hu) = 0

∂tu +∇
(

1
2 u2 + gη − Ps

ρ

)
= 0

(3.21)

3.3.2 Serre Green-Nagdhi equations

Previously, we assumed that vertical velocity was negligible (3.3.1). We
saw that it was equivalent to assume the pressure to be hydrostatic every-
where in the fluid. Now, the vertical velocity is taken as linear with respect
to y, this will bring up the hydrodynamic part of the pressure. This ansazt
also means that the incompressibility is imposed, i.e. ∇ · u = 0. Our
ansazt is that v is defined as follow :

v = vb +
y + d
η + d

(vs − vb) (3.22)

The vertical velocity is equal to vb at the seabed and grows linearly to vs
when y = η. One can observe that we have vs − vb = ∂th + u ·∇h and
therefore using (3.9), v can be rewritten as follow :

v = vb − (y + d)∇ · u (3.23)

Because u is assumed to be uniform across the fluid depth, we have
ub ≈ u ≈ u. Therefore, vs can be computed because the bottom is exactly
known4. As a consequence, v is not an unknown anymore. In other words,
we can use it to compute v̇ and ξ.

Depth-averaged vertical acceleration

As shown in A.2 page 33, the relation below holds for any physical quan-
tity φ of the flow (assumed ideal and incompressible) :∫ η

−d

D
Dt

(φ)dy = ∂t

∫ η

−d
φdy +∇ ·

∫ η

−d
uφdy (3.24)

Using this relation, we can compute the depth-averaged vertical ac-
celeration v̇, as we have :

v̇ =
D
Dt

(v) = ∂tv + (u ·∇) v + v∂yv

4i.e. we know d(x, t), ∀x, ∀t.
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After some cumbersome algebra, we obtain :

v̇ = v̇b +
h
2

[
(∇ · u)2 −∇ · ∂tu− (u ·∇) (∇ · u)

]
(3.25)

One can show that, if the bottom was horizontal, the free surface ac-
celeration would be equal to :

D
Dt

(−h∇ · u) = h
[
(∇ · u)2 −∇ · ∂tu− (u ·∇) (∇ · u)

]
(3.26)

We denote by Γ̃ this quantity. The bottom acceleration is given by v̇b,
and we designate by Γb this quantity. Because when the bottom is variable
we have vs = vb − h∇ · u, therefore the acceleration of the free surface, Γs,
is given by :

Γs = Γb + Γ̃ (3.27)

Using those notations, we can write the depth-averaged vertical ac-
celeration as follow :

v̇ = Γb +
1
2

Γ̃ (3.28)

The hydrodynamic pressure

The last step is to compute the quantity ξ, which is related to the hydro-
dynamic pressure5.

ξ =
∫ η

−d
(y + d)

D
Dt

(v)dy

=
∫ η

−d

D
Dt

((y + d)v)dy−
∫ η

−d
v(v− vb)dy

= ∂t

∫ η

−d
(y + d)vdy +∇ · u

∫ η

−d
(y + d)vdy + (∇ · u)

∫ η

−d
(y + d)vdy

We have : ∫ η

−d
(y + d)vdy =

h2

2
vb −

h3

3
∇ · u

Injecting this result in the expression of ξ yields to the following result,
after some algebra and simplifications:

ξ =
h2

2
Γb +

h2

3
Γ̃ (3.29)

Final Serre-Green Nagdhi equations

Ultimately, we have the following equation :

∂t (hu)+∇ · (hu⊗ u)+∇
(

gh2

2
+

h2Γb

2
+

h2Γ̃
3

)
= h

(
g + Γb +

Γ̃
2

)
∇d− h∇Ps

ρ
(3.30)

with :
Γ̃ = h

[
(∇ · u)2 −∇ · ∂tu− (u ·∇) (∇ · u)

]
(3.31a)

5The link between ξ and the hydrodynamic pressure is that we have : Pdy =
ρ
h ξ
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Γb = −
(
∂ttd + 2u ·∇∂td + u2∆d + u · (∇ · u)∇d + (∂tu) ·∇d

)
(3.31b)

The momentum equation (3.30) and the continuity equation (3.9) are
known as the Serre Green-Nagdhi (SGN) equations.

Remark 3.1 One can notice that if the bottom is assumed to be variable in space only (not
in time), only Γb is affected, where the time derivatives of d vanish. And the
equations given by Fernando J. Seabra-Santos et al. (1987) are recovered.

When the bottom is assumed to be horizontal, we have Γb = 0 and the left
part of the equation (3.30) vanishes. The equation (3.30) given page 26 is then
recovered.

Remark 3.2 An other remark that can be done, is that when the accelerations of the bottom Γb
and of the free surface Γ̃ − if the bottom would have been horizontal − are taken
as zero, then the SW equations derived before are recovered.

A more classical form

In this subsection, we rewrite the equation (3.30) into a more classical
form, i.e. a time derivative plus a gradient (plus something if it is not
conservative).

Remark 3.3 This classical form is given in two dimensions only. One can do it in three dimen-
sions, but the algebra is quite cumbersome. . . We denote by φα, the derivative of
φ according to α. Using this notation, the equation (3.30) becomes :

(hu)t +

(
hu2 +

h2g
2

+
h2Γb

2
+

h2Γ̃
3

)
x
= h

(
g + Γb +

Γ̃
2

)
dx (3.32)

Starting from the equation (3.32), we gather all the time derivatives
of the velocity u. Doing this, time derivatives of h and d appear. The
time derivative of the elevation ht can be eliminated using the continuity
equation (3.9). The time derivative of the bottom dt is supposed to be
known.

Finally, after some simplifications6, we obtain the following equation :

qt +

(
hu2 − 2h3u2

x
3
− h3uuxx

3
− h2hxuux −

h2

2
(
dtt + u2dxx + uuxdx

))
x
=

−u
[(

3
2

h2dtx − h (hu)x dx

)
x
+ hxud2

x + 2huxd2
x + 4hdxdtx

]
−hdx

(
dtt + u2dxx

)
+

h2

2
(
u2

x − uuxx
)

dx − hgηx

(3.33)

with

q = hu−
(

h3ux

3

)
x
+ hud2

x + u
(

h2

2
dx

)
x

(3.34)

Remark 3.4 We can notice that, in the case of a flat bottom, we recover the classical SGN equa-
tions :

6May be it’s more simplificable. . .
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qt +

(
hu2 +

gh2

2
− 2h3u2

x
3
− h3uuxx

3
− h2hxuux

)
x
= 0

q− hu +

(
h3ux

3

)
x
= 0

Solving the algebraic equation with a pseudo-spectral method The first
two equations (3.9) and (3.32) are evolution type, while the third one (3.34)
relates the conserved variable q to the primitive variables. In this para-
graph, we explain how to recover the averaged velocity u from q when the
equations are solved using a pseudo-spectral method.

We call d? the “averaged” value of the depth water. This value is sup-
posed to be the same for all x (but not necessarily for all t). It does not
matter if it is not the real averaged value, but it is supposed to be a known
constant value, in space, around d7. We write h as this constant value d?

plus a fluctuating value h̃, so that h = d? + h̃. So we have :

q− d?u +
d?3

3
uxx = h̃u +

d?3

3
uxx −

(
h3ux

3

)
x
+ hud2

x + u
(

h2

2
dx

)
x︸ ︷︷ ︸

N (h,u,d)

Then, we apply a fixed point method, in the Fourier space,

ûj+1 =
q̂−F

{
N
(
h, uj, d

)}
d? + k2

3 d?3 (3.35)

where φ̂ = F {φ}. Using this method, u can be recovered, at the desired
precision ε.

3.4 An example of a linearization

In this very last section, we show a way to linearize the SW equations
when the bottom is variable so the IF and the MIF methods can be used.
(The procedure is more or less the same for the SGN equations. . . but a
little bit longer)

Let’s start from the equation (3.21), re-written here below, in two di-
mensions only. ∂th + (hu)x = 0

∂tu +
(

1
2 u2 + gη − Ps

ρ

)
x
= 0

(3.36)

Our goal is to rewrite this set of equations into the generic form shown
in the previous chapter, dty + Ay = N (y, t), where A is not zero, obvi-
ously. . .

For that purpose, we write h as the sum of two quantities :

h = h̃ + d0 (3.37)

7By testing different values, empirically I found that the best value was d? = min(d(t))
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where d0 is a given value around d. This value is constant in space and in
time and horizontal. It is assumed to be known. The next step is to write
the equation using this decomposition, which gives :∂th̃ + d0ux = −

(
h̃u
)

x

∂tu + gh̃x = −
(

1
2 u2 + g(d0 − d)− Ps

ρ

)
x

(3.38)

In the Fourier space this set of equations becomes simply :∂t
ˆ̃h + ikd0û = −ikF

{
h̃u
}

∂tû + ikg ˆ̃h = −ikF
{

1
2 u2 + g(d0 − d)− Ps

ρ

} (3.39)

The last step is about nondimensionalization. Therefore, we introduce
y the vector of dimensionless variables in the Fourier space :

ŷ ≡
(

ik ˆ̃h
iω
g û

)
(3.40)

where ω2 = gk2d0. The SW equation are now :

ŷt + Aŷ = N (ŷ, t) , A =

(
0 iω

iω 0

)
(3.41)

and N (ŷ, t) contains all the remaining non-linear terms. That is to say :

N (ŷ, t) =

(
k2F

{
h̃u
}

ωk
g F

{
1
2 u2 + g(d0 − d)− Ps

ρ

}) (3.42)

And that it’s. We now have the SW equations written in the classical
form that we used to introduce the Integrating Factor and the Modified
Integrating Factor methods. Moreover, given the form the matrix A, one
can compute analytically the exponentials, and we have :

eAt =

(
cos(ωt) i sin(ωt)
i sin(ωt) cos(ωt)

)
(3.43)

for that reason, computing eAty has a very small cost.

Remark 3.5 If the exponential can not be analytically computed, it is possible to compute the
action of the matrix exponential without computing the actual matrix exponential.
One can find more information in this paper : http://eprints.ma.man.
ac.uk/1591/ called Computing the Action of the Matrix Exponential,
with an Application to Exponential Integrators by Awad H. Al-Mohy and
Nicholas J. Higham, published in 2011.

http://eprints.ma.man.ac.uk/1591/
http://eprints.ma.man.ac.uk/1591/




Conclusion

En français

Ayant suivi le parcours recherche proposé à l’UTC, j’ai pu avoir la chance de
faire mon stage de fin d’études dans un laboratoire de recherches univer-
sitaire. Cela m’a permis de mettre un pied dans le monde de la recherche,
d’étudier des méthodes de simulations à la pointe8, mais aussi d’avoir une
certaine autonomie et liberté.

Si je devais retenir un enseignement de ce stage de recherche, ce se-
rait qu’il faut commencer par s’approprier les méthodes existantes puis
chercher à les remettre en cause afin de les améliorer. C’est ainsi que j’ai
commencé à travailler avec des méthodes existantes (comme le Facteur
Intégrant et le Facteur Intégrant Modifié) et des équations simples. Puis
une fois que je me suis correctement approprié les équations, j’ai pu tra-
vailler à leur généralisation. Les équations de Saint-Venant à fond variable
en temps et en espace sont connues depuis longtemps. En revanche, à
ma connaissance, ce n’est pas le cas pour les équations de Serre, qui ne
sont connues qu’à fond variable en espace, depuis la thèse de Fernando
Seabra Santos en 1985. Généraliser les équations de Serre à un fond va-
riable en temps et en espace me semblait donc important afin de mieux
rendre compte de la réalité, notamment lors de tsunamis où le fond sous-
marin varie dans le temps. Ce modèle, présenté dans ce rapport, devrait
d’ailleurs être publié dans un article scientifique prochainement.

J’espère ainsi qu’avec ce stage de fin d’études, une petite pierre a pu
être ajoutée à l’édifice que constitue la recherche en mécanique des fluides.

Remark 3.6 Le lecteur intéressé trouvera le code Fortran 95 que j’ai écrit lors de ce stage à cette
adresse https://chabotsi.fr/to/sTI8Fg. Ce code permet de simuler les
équations de Saint-Venant et de Serre à fond variable en temps et en espace avec
les différentes méthodes que nous avons exposées.

In English

Because I have been following the research course at the UTC, I had the
chance to make my final internship in an university research laboratory.
This internship enabled me to put one foot in the world of research, to
study the state-of-the-art simulation methods, but also to enjoy autonomy
and freedom.

If there is a lesson of this experience to take home is that one must take
ownership of the existing methods and then try to challenge them in order

8la thèse de Brice Eichwald, sur le Facteur Intégrant Modifié, date de 2013 seulement !
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to make them better. That’s how I started to work with existing methods
(such as the Integrating Factor and the Modified Integrating Factor) and
simple wave equations. Once I was comfortable with those equations, I
have been able to work on their generalization. The SW equations with
a variable bottom, in space and time, have been known for a long time.
On the other hand, to my knowledge, the Serre equations are known for a
variable bottom in space only since 1985, with the PhD thesis of Fernando
Seabra Santos. Generalizing the Serre equations to a variable bottom in
space and time looked important to me in order to reflect the reality a bit
better. This model, introduced in this report, should be published soon in
a scientific article.

I hope that with this internship, a small contribution to the research
community in fluid mechanics has been done.

Remark 3.7 Interested readers can find the Fortran 95 code that I wrote in this internship at this
address https://chabotsi.fr/to/sTI8Fg. This code is used to simulate
the SW and SGN equations with a variable bottom in time and space with the
different methods we have outlined.

https://chabotsi.fr/to/sTI8Fg


AThe proof of some identities

In this appendix, we prove some identities that have been used in this
report and that may be useful to interested readers.

A.1 The divergence of a tensor product

Let (u, v) ∈ R2 ×R2, we show that :

∇ · (u⊗ v) = u (∇ · v) + (v ·∇) u (A.1)

Proof.

u (∇ · v) + (v ·∇) u =

(
u1∂x1 v1 + u1∂x2 v2
u2∂x1 v1 + u2∂x2 v2

)
+

(
v1∂x1 u1 + v2∂x2 u1
v1∂x1 u2 + v2∂x2 u2

)
=

(
u1∂x1 v1 + v1∂x1 u1 + u1∂x2 v2 + v2∂x2 u1
u2∂x1 v1 + v1∂x1 u2 + u2∂x2 v2 + v2∂x2 u2

)
=

(
∂x1 (u1v1) + ∂x2 (u1v2)
∂x1 (u2v1) + ∂x2 (u2v2)

)
= ∇ · (u⊗ v)

A.2 A Leibniz rule-like for a total derivative

In the case of an ideal incompressible fluid, we prove that, for a quantity
φ, we have the following relation :∫ η

−d

D
Dt

(φ)dy = ∂t

∫ η

−d
φdy +∇ ·

∫ η

−d
uφdy (A.2)
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Proof.∫ η

−d

D
Dt

(φ)dy =
∫ η

−d
∂tφ + u ·∇φ + v∂yφdy

= ∂t

∫ η

−d
φdy− φs∂tη − φb∂td +

∫ η

−d
∇ · (uφ)dy−

∫ η

−d
φ (∇ · u)

+
∫ η

−d
∂y (vφ)dy−

∫ η

−d
φ∂yvdy

= ∂t

∫ η

−d
φdy +∇ ·

∫ η

−d
uφdy− φsvs − φbvb + [vφ]

η
−d

−
∫ η

−d
φ

∇ · u + ∂yv︸ ︷︷ ︸
=0


= ∂t

∫ η

−d
φdy +∇ ·

∫ η

−d
uφdy
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Titre Modélisation et simulation numérique des vagues non linéaires

Résumé Les vagues extrêmes (tsunamis, vagues scélérates, etc.) jouent
un rôle important dans l’environnement et les risques naturels. Ces
phénomènes sont toujours mal compris et leur compréhension passe,
entre autres, par la simulation numérique. Cette simulation est d’autant
plus difficile que les vagues sont extrêmes, les domaines grands et les
temps longs, ces circonstances correspondants aux situations réelles.

Ce rapport relate les techniques de simulation numérique précises qui ont
été développées et mises en place, permettant ainsi la simulation sur des
temps longs et des domaines grands. Ces techniques sont basées sur les
méthodes du Facteur Intégrant et du Facteur Intégrant modifié.

Dans le but d’avoir une simulation au plus proche de la réalité, ce rapport
expose aussi la généralisation des équations de Serre − Green-Nagdhi à
un fond variable en temps et en espace.

Mots-clés TN10, Eaux peu-profondes, équations de Serre, vagues non-
linéaires, dense output

Title Modeling and numerical simulation of non-linear water-waves

Abstract Extreme waves (tsunamis, rogue waves) play an important
role in the environment and natural hazards. Theses phenomena are
still misundertood and their understanding requires, inter alia, numerical
simulation. The simulation is harder the more waves are extreme, the
domains big and the times long ; those circumstances corresponding to
actual situations.

This report relates the precise numerical simulation techniques that
have been developed and used, enabling simulations over big domains
and long times to be done. Those techniques involve the Integrating Factor
and the Modified Integrating Factor methods.

In order to have a simulation as closed from the reality as possible,
this report shows also the generalization of the Serre − Green-Nagdhi
equations to a variable bottom in time and space.

Keywords TN10, Shallow water, Serre Green-Nagdhi, non-linear water-
waves, dense output
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